Unified Analysis of Time Domain Mixed Finite Element Methods for Maxwell’s Equations in Dispersive Media
نویسندگان
چکیده
In this paper, we consider the time dependent Maxwell’s equations when dispersive media are involved. The Crank-Nicolson mixed finite element methods are developed for three most popular dispersive medium models: the isotropic cold plasma, the one-pole Debye medium and the two-pole Lorentz medium. Optimal error estimates are proved for all three models solved by the Raviart-Thomas-Nédélec spaces. Extensions to multiple pole dispersive media are presented also. Mathematics subject classification: 65N30, 35L15, 78-08.
منابع مشابه
Superconvergence analysis for Maxwell's equations in dispersive media
In this paper, we consider the time dependent Maxwell’s equations in dispersive media on a bounded three-dimensional domain. Global superconvergence is obtained for semi-discrete mixed finite element methods for three most popular dispersive media models: the isotropic cold plasma, the one-pole Debye medium, and the two-pole Lorentz medium. Global superconvergence for a standard finite element ...
متن کاملGeneral Closed-Form PML Constitutive Tensors to Match Arbitrary Bianisotropic and Dispersive Linear Media
The perfectly matched layer (PML) constitutive tensors that match more general linear media presenting bianisotropic and dispersive behavior are obtained for single interface problems and for two-dimensional (2-D) and three-dimensional (3-D) corner regions. The derivation is based on the analytic continuation of Maxwell’s equations to a complex variables domain. The formulation is Maxwellian so...
متن کاملDeveloping Finite Element Methods for Maxwell's Equations in a Cole-Cole Dispersive Medium
In this paper, we consider the time-dependent Maxwell’s equations when Cole–Cole dispersive medium is involved. The Cole–Cole model contains a fractional time derivative term, which couples with the standard Maxwell’s equations in free space and creates some challenges in developing and analyzing time-domain finite element methods for solving this model as mentioned in our earlier work [J. Li, ...
متن کاملConvergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media
This study is concerned with the solution of the time domain Maxwell’s equations in a dispersive propagation media by a Discontinuous Galerkin Time Domain (DGTD) method. The Debye model is used to describe the dispersive behaviour of the media. The resulting system of equations is solved using a centered flux discontinuous Galerkin formulation for the discretization in space and a second order ...
متن کاملA numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کامل